

# Gymnasium Cäcilienschule Oldenburg (Oldb)

## unesco - projekt - schule

## Schulinternes Curriculum Chemie Einführungsphase (Klasse 11) – Organische Chemie

Der Einstieg in die organische Chemie in Klasse 11 kann entweder über die "Paraffine und Olefine" oder über die "Alkanole und ihre Oxidationsprodukte" erfolgen. Im Folgenden findet sich ein möglicher Ablauf für beide Module. Je nachdem, mit welchem Modul begonnen wird, fallen bestimmte Inhalte dann im zweiten Modul kürzer aus oder weg. Dies ist in den Modulen durch ein Sternchen (\*) gekennzeichnet. Grau hinterlegte Inhalte sind **optionale Ergänzungen** zu den Inhalten im KC. Die genannten relevanten bekannten Inhalte aus der Sek I dienen zur Erinnerung und müssen gegebenenfalls bei den Schülern reaktiviert und vertieft werden.

Stand: 01.08.2022

## **Modul Paraffine und Olefine**

| Fachinhalte                                         | Anmerkungen                                                  | Fachbegriffe                           |
|-----------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
|                                                     | (Experimente, Modelle, Stoffe, Kontexte)                     |                                        |
| Alkane                                              |                                                              |                                        |
| Relevante bekannte Inhalte aus der Sek I:           |                                                              |                                        |
| Elektronenpaarbindung (polar/unpolar),              |                                                              |                                        |
| Elektronegativität, Elektronenpaarabstoßungs-Modell |                                                              |                                        |
| (EPA), Dipolmoleküle, Lewis-Schreibweise,           |                                                              |                                        |
| zwischenmolekulare Wechselwirkungen                 |                                                              |                                        |
| (Wasserstoffbrückenbindung), Stoffnachweise für     |                                                              |                                        |
| Kohlenstoffdioxid (Kalkwasserprobe) und Wasser      |                                                              |                                        |
| (Kupfersulfatnachweis), Gesetz von Avogadro         |                                                              | 0. "                                   |
|                                                     | Mögliche Kontexte: Treibhauseffekt, Verbrennung              | Stoffebene/Teilchenebene               |
| Möglicher inhaltlicher Gang:                        | fossiler Brennstoffe, Treibhausgase, Tätigkeitsfelder in der | Verbrennung                            |
| - Methan                                            | Petrochemie und bzgl. analytischer Verfahren                 | Chemische Reaktion                     |
| - Nachweis von Kohlenstoff- und                     | (Berufsorientierung)                                         | Reaktionsgleichung                     |
| Wasserstoffatomen (Qualitative Analyse)*            |                                                              | Kalkwasserprobe                        |
| - Ermittlung der Verhältnisformel (quantitative     | <u>Mögliche Experimente:</u> Entzündung absinkender (→       | Kupfersulfatnachweis                   |
| Analyse)                                            | Dichte) Benzindämpfe (Petrolether); Explosionsversuch        | Elektronenpaarbindung / Atombindung    |
| - Molekülstruktur                                   | mit Pappröhre als Kolbenmodell (Verbrennungsmotor);          | Stoffmenge, Stoffportion, molare Masse |
| - Verbrennungen (Reaktionsgleichungen,              | Verbrennung von Erdgas mit Produktnachweisen                 | Einfachbindung                         |
| Stoffumsatz, Stoffportion, Stoffmenge, molare       | (Kohlenstoffdioxid, Wasser); Vergleich der Viskosität von    | Stoffgemisch                           |
| Masse, CO <sub>2</sub> -Produktion berechnen)       | Alkanen über das Fließverhalten; Löslichkeiten flüssiger     | Homologe Reihe                         |
| ,                                                   | Alkane, Entflammbarkeit von flüssigen Alkanen                | kurzkettig/langkettig                  |

|                                                    |                                                      | 7                                       |
|----------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| - Energiebegriff, Energiegehalt, Verbrennungsmotor | (Flammpunkt); Fettbrand; Ermittlung von Heizwerten;  | van der Waals-Kräfte                    |
| (Otto/Diesel), Energiediagramm                     | Cracken von Paraffinöl mit Perlkatalysator           | Viskosität                              |
| - Homologe Reihe der Alkane                        |                                                      | Dichte                                  |
| - Verwendung einzelner Alkane                      | Mögliche Modelle: Kugel-Stab-Modell und Magnetmodell | Isomerie                                |
| - Erdöl, Erdgas, Biogas (Zusammensetzung,          | (GeoMag), Modellversuch Berührungsflächen bei        | Fraktion                                |
| Entstehung, Förderung, Raffination)                | Isomeren                                             | Destillation                            |
| - Fraktionierte Destillation                       |                                                      | fossile/nachwachsende Rohstoffe         |
| - Nachwachsende Rohstoffe (Bewertungsaspekt)       | Arbeit mit qualitativen Energiediagrammen, Recherche | Nachhaltigkeit                          |
| - Verzweigte Alkane (Struktur-Isomerie) am Bsp.    | von Stoffdaten im Tafelwerk                          | hydrophil/lipophil, hydrophob/lipophob/ |
| Butan (Feuerzeuggas), Gas-Chromatographie*         |                                                      | Energie                                 |
| - IUPAC-Nomenklatur (prim., sek., tert. C-Atome)*  |                                                      | Energieentwertung                       |
| - Stoffeigenschaften der Alkane: Löslichkeit,      |                                                      | Energieübertragung                      |
| Schmelz- und Siedetemperaturen, Viskosität         |                                                      | Radikal                                 |
| (London-Kräfte, Verzweigungsgrad)*                 |                                                      |                                         |
| - Cracken (Teilchenebene, als Übergang zu den      |                                                      |                                         |
| Alkenen), mit "Mechanismus" und Radikalbildung?    |                                                      |                                         |
| Alkene                                             |                                                      |                                         |
| Möglicher inhaltlicher Gang:                       |                                                      |                                         |
| - Ethen (Summenformel, Molekülstruktur, homologe   | Mögliche Kontexte: Ethen als Pflanzenhormon, Terpene | gesättigt/ungesättigt                   |
| Reihe, Nomenklatur)                                | (Duftstoffe, Insektizide)                            | Doppelbindung                           |
| - Doppelbindung                                    |                                                      |                                         |
| - Stoffeigenschaften, Verwendung                   | Mögliche Experimente: Nachweis der Doppelbindung     |                                         |
|                                                    | mit Baeyer-Reagenz (Natriumcarbonat,                 |                                         |
|                                                    | Kaliumpermanganat-Lsg.); Bromnachweis über AV-       |                                         |
|                                                    | Medien                                               |                                         |



# Gymnasium Cäcilienschule Oldenburg (Oldb)

unesco - projekt - schule

# **Modul Alkanole und ihre Oxidationsprodukte**

| Thema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anmerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fachbegriffe                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Experimente, Modelle, Stoffe, Kontexte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            |
| Alkanole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| Relevante bekannte Inhalte aus der Sek I:  Van-der-Waals-Kräfte zu London-Kräften überführen, Wasserstoffbrückenbindungen Polarität, Elektronegativität. Dipole, stöchiometrische Berechnungen  Möglicher inhaltlicher Gang:  - Qualitative Analyse *  - Quantitative Analyse *  - Alkoholische Gärung  - Molekülstruktur  - Homologe Reihe  - Nomenklatur*  - Strukturisomerie  - prim., sek., tert. Alkanole  - mehrwertige Alkanole  - Struktur-Eigenschaftsbeziehungen: Löslichkeit, Siedetemperaturen | Mögliche Kontexte: Alkohol im Blut, Alkohol als Treibstoff  - Berechnung des Blutalkoholgehalts - Physiologische Wirkung von Ethanol und Methanol - Nachweis von Kohlenstoff- und Wasserstoffatomen (Kalkwasserprobe, Wassernachweis) - Nachweis von Sauerstoffatomen (mit Magnesium, siehe Flint, S. 24-26) - Molmassenbestimmung von Ethanol und Methanol (z.B. mit Einwegspritzen) - Unterscheidung Methanol und Ethanol (Verbrennungsreaktion) - Reaktion von Ethanol und Natrium (qualitativ) - Destillation (alkoholfreies und "normales" Bier, Schnapsbrennen (Methanol/Ethanol)) - Lewisformeln und EPA-Modell, Molekülbaukasten - Untersuchungen zur Löslichkeit in Wasser - Gefrierpunktserniedrigung von Wasser durch Glycerin (Frostschutzmittel) | Alkanole funktionelle Gruppe Hydroxygruppe Homologe Reihe Strukturisomerie hydrophil / hydrophob primär, sekundär, tertiär |

# Oxidationsprodukte der Alkanole: Alkanale, Alkanone:

#### Relevante bekannte Inhalte aus der Sek I:

Redoxreaktion und Oxidationszahlen bei anorganischen Stoffen

#### Möglicher inhaltlicher Gang:

- Molekülstruktur
- homologe Reihe
- Eigenschaften
- Oxidationszahlen bei organischen Stoffen

#### Alkansäuren:

#### Relevante bekannte Inhalte aus der Sek I:

Säure-Base-Reaktion, pH-Wert, Neutralisation, Titration

#### Möglicher inhaltlicher Gang:

- Molekülstruktur
- homologe Reihe
- Eigenschaften
- typische Reaktion: Ester am Beispiel Essigsäureethylester, (Stoffklasse, kein Mechanismus)

#### Möglicher Kontext: Abbau von Alkanolen

- Oxidation versch. Alkanole durch Kupferoxid
- Nachweis durch Schiffs Reagenz, **Fehling-Probe**, *Benedict-Reagenz*, Tollensprobe (Silberspiegel)
- Alkoholabbau im menschlichen Körper
- ggf. Zucker (Aldosen, Ketosen)

#### Möglicher Kontext: Herstellung von Essigsäure

- Betrachtung der Polaritäten im Molekül
- Untersuchung der sauren Eigenschaften
- Reaktion mit Magnesiumpulver
- Vergleich mit Salzsäure
- Titration von Essig, Jogurt

Carbonyl-Gruppe (Aldehyd-, Keto-Gruppe) Carboxy-Gruppe

schwache Säuren, unvollständige Dissoziation

#### Literatur:

Flint, Alfred und Anscheit, Katja; 2014; "Chemie fürs Leben" – Bier, Baby-Öl und Essig-Essenz, Rostock